13 research outputs found

    Event Detection in Micro-PMU Data: A Generative Adversarial Network Scoring Method

    Full text link
    A new data-driven method is proposed to detect events in the data streams from distribution-level phasor measurement units, a.k.a., micro-PMUs. The proposed method is developed by constructing unsupervised deep learning anomaly detection models; thus, providing event detection algorithms that require no or minimal human knowledge. First, we develop the core components of our approach based on a Generative Adversarial Network (GAN) model. We refer to this method as the basic method. It uses the same features that are often used in the literature to detect events in micro-PMU data. Next, we propose a second method, which we refer to as the enhanced method, which is enforced with additional feature analysis. Both methods can detect point signatures on single features and also group signatures on multiple features. This capability can address the unbalanced nature of power distribution circuits. The proposed methods are evaluated using real-world micro-PMU data. We show that both methods highly outperform a state-of-the-art statistical method in terms of the event detection accuracy. The enhanced method also outperforms the basic method

    Event-Based Analysis of Solar Power DistributionFeeder Using Micro-PMU Measurements

    No full text
    Solar distribution feeders are commonly used in solar farms that are integrated into distribution substations. In this paper, we focus on a real-world solar distribution feeder and conduct an event-based analysis by using micro-PMU measurements. The solar distribution feeder of interest is a behind-the-meter solar farm with a generation capacity of over 4 MW that has about 200 low-voltage distributed photovoltaic (PV) inverters. The event-based analysis in this study seeks to address the following practical matters. First, we conduct event detection by using an unsupervised machine learning approach. For each event, we determine the event's source region by an impedance-based analysis, coupled with a descriptive analytic method. We segregate the events that are caused by the solar farm, i.e., locally-induced events, versus the events that are initiated in the grid, i.e., grid-induced events, which caused a response by the solar farm. Second, for the locally-induced events, we examine the impact of solar production level and other significant parameters to make statistical conclusions. Third, for the grid-induced events, we characterize the response of the solar farm; and make comparisons with the response of an auxiliary neighboring feeder to the same events. Fourth, we scrutinize multiple specific events; such as by revealing the dynamics to the control system of the solar distribution feeder. The results and discoveries in this study are informative to utilities and solar power industry.Comment: 5 pages, 6 figures, IEEE ISGT202
    corecore